- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Chase, Eve A. (1)
-
Fontes, Christopher J. (1)
-
Fryer, Christopher L. (1)
-
Gabella, William (1)
-
Holley-Bockelmann, Kelly (1)
-
Jani, Karan (1)
-
Kedia, Atul (1)
-
Korobkin, Oleg (1)
-
Lange, Jacob (1)
-
O'Shaughnessy, Richard (1)
-
O’Shaughnessy, Richard (1)
-
Ristic, Marko (1)
-
Ruiz-Rocha, Krystal (1)
-
Weller, Robert A (1)
-
Wollaeger, Ryan T. (1)
-
Yelikar, Anjali B (1)
-
Yelikar, Anjali B. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Over a hundred gravitational-wave (GW) detections and candidates have been reported from the first three observing runs of the Advanced LIGO-Virgo-KAGRA (LVK) detectors. Among these, the most intriguing events are binary black hole mergers that result in a “lite” intermediate-mass black hole (IMBH) of ∼102M⊙, such as GW170502 and GW190521. In this study, we investigate 11 GW candidates from LVK’s third observing run with total detector-frame masses in the lite IMBH range. Using the Bayesian inference algorithmRIFT, we systematically analyze these candidates with three state-of-the-art waveform models that incorporate higher harmonics, which are crucial for resolving lite IMBHs in LVK data. For each candidate, we infer the premerger and postmerger black hole masses in the source frame, along with black hole spin projections across all three models. Under the assumption that these are binary black hole mergers, our analysis finds that five have a postmerger lite IMBH with masses ranging from 110 to 350M⊙with over 90% confidence interval. Additionally, we note that one of their premerger black holes is within the pair-instability supernova mass gap (60–120M⊙), and two premerger black holes are above the mass gap. Furthermore, we report discrepancies among the three waveform models in intrinsic parameters, with at least three GW candidates showing deviations beyond accepted statistical limits. While the astrophysical certainty of these candidates cannot be established, our study provides a foundation to probe the lite IMBH population that emerge within the low-frequency noise spectrum of LVK detectors.more » « lessFree, publicly-accessible full text available May 28, 2026
-
Kedia, Atul; Ristic, Marko; O'Shaughnessy, Richard; Yelikar, Anjali B.; Wollaeger, Ryan T.; Korobkin, Oleg; Chase, Eve A.; Fryer, Christopher L.; Fontes, Christopher J. (, Physical Review Research)
An official website of the United States government
